Đề bài:So sánh
a)\(5^{36}và11^{24}\)
\(5^{36}=\left(5^3\right)^{12}\)
\(11^{24}=\left(11^2\right)^{12}\)
\(\Leftrightarrow125^{12}và121^{12}\)
\(\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
\(5^{36}=\left(5^3\right)^{12}\)
\(11^{24}=\left(11^2\right)^{12}\)
\(125^{12}>121^{12}\)
b)\(13^{40}và2^{160}\)
Ta có \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}\)
Vì \(16^{40}>13^{40}\)
=>\(2^{161}>13^{40}\)