Mình giúp bài 3 thôi! (2 bài còn lại chắc bn tự làm được)
Bài 3: (Hình tự vẽ)
a, Xét tam giác OAM và tam giác OBM có:
góc OAM = góc OBM = 90o (gt)
góc AOM = góc BOM (OM là phân giác của góc B theo gt)
OM là cạnh chung
\(\Rightarrow\) \(\Delta\)OAM = \(\Delta\)OBM (cạnh huyền - góc nhọn)
\(\Rightarrow\) MA = MB (2 cạnh tương ứng)
b, Vì tam giác OAM = tam giác OBM (cma)
\(\Rightarrow\) OA = OB (2 cạnh tương ứng)
Xét tam giác OAB có: OA = OB
\(\Rightarrow\) OAB cân tại O (đ/n)
Vì OAB cân tại O
\(\Rightarrow\) góc OAB = góc OBA (t/c)
Xét tam giác OAB: góc AOB + góc OAB + góc OBA = 180o (tổng 3 góc trong 1 tam giác)
\(\Rightarrow\) 60o + góc OAB + góc OBA = 180o
góc OAB + góc OBA = 120o
góc OAB = góc OBA = \(\frac{120^o}{2}\) = 60o
Vì tam giác OAB có 3 góc bằng nhau (= 60o)
\(\Rightarrow\) OAB là tam giác đều (đ/n)
c, Vì OI là phân giác của tam giác đều OAB
\(\Rightarrow\) OI là đường trung trực của tam giác OAB (định lí) hay IA = IB
Vì OI là đường trung trực của tam giác đều OAB
\(\Rightarrow\) OI là đường cao hay OI \(\perp\) AB
Mà M \(\in\) OI nên OM \(\perp\) AB hay IM \(\perp\) AB
Xét tam giác OIB vuông tại I (OI \(\perp\) IB)
Áp dụng định lí Py-ta-go vào tam giác OIB ta có:
OI2 + IB2 = OB2 (1)
Xét tam giác IMB vuông tại I (IM \(\perp\) IB)
Áp dụng định lí Py-ta-go vào tam giác IMB ta có:
IM2 + IB2 = MB2 (2)
Xét tam giác OBM vuông tại B có (MB \(\perp\) OB)
Áp dụng định lí Py-ta-go vào tam giác OBM ta có:
OB2 + BM2 = OM2 (3)
Thay (1), (2) vào (3)
\(\Rightarrow\) IO2 + IB2 + IM2 + IB2 = OM2 (đpcm)
Chúc bn học tốt! (Bài 3 khá dài đó :) )