\(y=sin\left(\frac{\pi}{2}-2x\right)=cos2x\Rightarrow y'=-2sin2x\)
\(y=sin\left(\frac{\pi}{2}-2x\right)=cos2x\Rightarrow y'=-2sin2x\)
mỗi đạo hàm y=sin(π/2-2x)
Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc vào x :
a) \(y=\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
b) \(y=\cos^2\left(\dfrac{\pi}{3}-x\right)+\cos^2\left(\dfrac{\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3x}-x\right)+\cos^2\left(\dfrac{2\pi}{3x}+x\right)-2\sin^2x\)
Tìm đạo hàm của hàm số sau :
\(y=\sin\left(\cos^2x\right)\cos\left(\sin^2x\right)\)
Tìm đạo hàm của hàm số sau :
\(y=\left(2-x^2\right)\cos x+2x\sin x\)
Đạo hàm cấp 2017 của hàm số y=sin x là
A.sin x B.-sin x C.cos x D.-cos x
Tìm đạo hàm của hàm số :
\(y=\sin^23x+\dfrac{1}{\cos^2x}\)
Tìm đạo hàm của các hàm số sau :
a) \(y=\left(9-2x\right)\left(2x^3-9x^2+1\right)\)
b) \(y=\left(6\sqrt{x}-\dfrac{1}{x^2}\right)\left(7x-3\right)\)
c) \(y=\left(x-2\right)\sqrt{x^2+1}\)
d) \(y=\tan^2x-\cot x^2\)
e) \(y=\cos\dfrac{x}{1+x}\)
Tìm đạo hàm của các hàm số sau :
a) \(y=5\sin x-3\cos x\)
b) \(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
c) \(y=x\cos x\)
d) \(y=\dfrac{\sin x}{x}+\dfrac{x}{\sin x}\)
e) \(y=\sqrt{1+2\tan x}\)
f) \(y=\sin\sqrt{1+x^2}\)
Chứng minh rằng \(f'\left(x\right)=0;\forall x\in R\) nếu :
a) \(f\left(x\right)=3\left(\sin^4x+\cos^4x\right)-2\left(\sin^6x+\cos^6x\right)\)
b) \(f\left(x\right)=\cos^6x+2\sin^4x.\cos^2x+3\sin^2x\cos^4x+\sin^4x\)
c) \(f\left(x\right)=\cos\left(x-\dfrac{\pi}{3}\right)\cos\left(x+\dfrac{\pi}{4}\right)+\cos\left(x+\dfrac{\pi}{6}\right)\cos\left(x+\dfrac{3\pi}{4}\right)\)
d) \(f\left(x\right)=\cos^2x+\cos^2\left(\dfrac{2\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3}-x\right)\)