Gọi `A(a;0) in Ox` và `B(0;b) in Oy`
`AB` nhỏ nhất `<=>M` là trung điểm `AB`
`=>{(x_M=[x_A+x_B]/2),(y_M=[y_A+y_B]/2):}`
`<=>{(27=a/2),(1=b/2):}`
`<=>{(a=54),(b=2):}`
`=>A(54;0) ; B(0;2)`
Có:`\vec{AB}=(-54;2) - ` là vtcp của `d`
`=>` Vtpt của `d` là: `\vec{n}=(1;27)`
Mà `B(0;2) in d`
`=>` Ptr `d` là: `1(x-0)+27(y-2)=0`
`<=>x+27y-54=0`