a) Ta có: \(D=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}\)
\(=\dfrac{2}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{24}+\dfrac{1}{24}-\dfrac{1}{48}+\dfrac{1}{48}-\dfrac{1}{96}\)
\(=\dfrac{2}{3}-\dfrac{1}{96}\)
\(=\dfrac{63}{96}=\dfrac{21}{32}\)
b)
Sửa đề: \(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\)
Ta có: \(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\)
\(\Leftrightarrow\dfrac{1}{2}\cdot E=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\)
\(\Leftrightarrow\dfrac{1}{2}\cdot E=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{2048}-\dfrac{1}{4096}\)
\(\Leftrightarrow\dfrac{E}{2}=\dfrac{1}{2}-\dfrac{1}{4096}=\dfrac{2047}{4096}\)
hay \(E=\dfrac{2047}{2048}\)