Thực hiện phép tính:
a, \(\dfrac{2x}{x^2+2xy}\)+\(\dfrac{y}{xy-2y^2}\)+\(\dfrac{4}{x^2-4y^2}\)
b, \(\dfrac{1}{x-y}\)+\(\dfrac{3xy}{y^3-x^3}\)+\(\dfrac{x-y}{x^2+xy+y^2}\)
c, \(\dfrac{2x+y}{2x^2+xy}\)+\(\dfrac{16x}{y^2-4y^2}\)+\(\dfrac{2x-y}{2x^2+xy}\)
d, \(\dfrac{1}{1-x}\)+\(\dfrac{1}{1+x}\)+\(\dfrac{2}{1+x^2}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
Tính
a). \(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
c) \(x+y+\dfrac{x^2+y^2}{x+y}\)
d) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)
1, Thực hiện phép tính :
a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)
b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)
c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)
d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)
e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)
f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)
g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)
h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)
i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)
2, Thực hiện phép tính :
a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)
b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)
c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)
d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)
Cộng các phân thức cùng mẫu thức :
a) \(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2y-4}{6x^3y}\)
b) \(\dfrac{x^2-2}{x\left(x-1\right)^2}+\dfrac{2-x}{x\left(x-1\right)^2}\)
c) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^6-6x}{x^2-3x+1}\)
d) \(\dfrac{x^2+38x+4}{2x^2+17x+1}+\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
Cộng các phân thức khác mẫu thức :
a) \(\dfrac{5}{6x^2y}+\dfrac{7}{12xy^2}+\dfrac{11}{18xy}\)
b) \(\dfrac{4x+2}{15x^3y}+\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
c) \(\dfrac{3}{2x}+\dfrac{3x-3}{2x-1}+\dfrac{2x^2+1}{4x^2-2x}\)
d) \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
Dùng quy tắc đổi dấu để tìm mẫu thức chung rồi thực hiện phép cộng :
a) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\)
b) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
c) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2-9}+\dfrac{x}{x^2-9}\)
d) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
e) \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
Làm tính cộng các phân thức sau :
a) \(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{y^3}\)
b) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x\left(x+3\right)}\)
c) \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
d) \(x^2+\dfrac{x^4+1}{1-x^2}+1\)
e) \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
làm phép tính
\(\dfrac{x}{x^2+2xy}+\dfrac{1}{x-2y}+\dfrac{4y}{4y^2-x^2}\)
\(\dfrac{2x}{x-1}+\dfrac{5x^2-5}{x^2+2x+1}.\dfrac{2x+2}{5-5x}\)
\(\left(\dfrac{2x}{2x-1}+\dfrac{3x}{2x+1}\right).\dfrac{4x^2-4x+1}{8x^2+10x}\)
\(\dfrac{5x-5}{2x}.\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\)
GIÚP MÌNH VỚI CÁC BẠN