Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng trong 6 số nguyên a1 a2 a3 a4 a5 a6 thỏa mãn a1^2+a2^2+a3^2+a4^2+a5^2=a6^2 thì các số ko đồng thời là số lẻ
trình bày rõ ha
Cho 2017 số nguyên a1;a2;....;a2016;a2017 có tổng bằng 0 thỏa mãn điều kiện: a1+a2=a3+a4=a5+a6=....=a2015+a2016=a2017+a1=1. Tìm a1;a2;a2017.
số 2015 được viết dưới dạng 2015=a1+a2+a3+.....+an với a1,a2,a3,a4,a5,a6,a7,a8,a9,..,an là các hợp số. số hợp số nhiều nhất với cách viết như trên là bao nhiêu?
a)cho a1 a2 a3 .... a 2014 la 2014 số nguyên dương bất kỳ cmr tồn tại ít nhất 2 số trong các số này mà hiêu của chúng chia hết cho 2013
Cho n là một số nguyên. Khi đó, có xảy ra trường hợp cả n + 3 và n2 + 3 đều là lập phương của các số nguyên không? Tại sao?
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Chứng minh rằng luôn tồn tại số nguyên dương n không vượt quá 2016 sao cho 2n-1 chia hết cho 2017.
Viết dãy các số tự nhiên từ 1 đến 101 thành một số A
a) A có là hợp số hay không ?
b) A có là số chính phương hay không ?
c) A có thể có 35 ước hay không ?
Cho a,b là các số nguyên thỏa mãn (a2+b2) chia hết cho 3 . Chứng minh rằng a và b cùng chia hết cho 3