\(x^4-4x+5=x^4-2x^2+1+2x^2-4x+2+2\)
\(=\left(x^2-1\right)^2+2\left(x-1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x^2-1\right)^2\ge0\forall x\\2\left(x-1\right)^2\ge0\forall x\end{matrix}\right.\) nên \(\left(x^2-1\right)^2+2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2-1\right)^2+2\left(x-1\right)^2+2\ge2>0\forall x\)
Hay \(x^4-4x+5>0\forall x\)(đpcm)