Có \(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\)
<=> \(\frac{a+b}{2}.\frac{a^2+b^2}{2}-\frac{a^3+b^3}{2}\le0\)
<=> \(\frac{a+b}{2}.\frac{a^2+b^2}{2}-\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\le0\)
<=> \(\frac{a+b}{2}\left(\frac{a^2+b^2}{2}-a^2+ab-b^2\right)\le0\)
<=>\(\frac{a+b}{2}\left(\frac{a^2+b^2}{2}-\frac{2a^2-2ab+b^2}{2}\right)\le0\)
<=> \(\frac{a+b}{2}.\frac{a^2+b^2-2a^2+2ab-2b^2}{2}\le0\)
<=> \(\frac{a+b}{2}.\frac{-\left(a^2-2ab+b^2\right)}{2}\le0\)
<=> \(\frac{a+b}{2}.\frac{-\left(a-b\right)^2}{2}\le0\)
<=> \(\frac{a+b}{2}.\frac{\left(a-b\right)^2}{2}\ge0\) (luôn đúng với mọi a,b \(\ge\)0)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a=b\\a,b\ge0\end{matrix}\right.\)
Vậy \(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\)