đặt hs y=f(x)=m(x-1)(x+2)+2x+1
vì đây là hàm đa thức nên liên tục trên R ∀m mà [-2;1]⊂R nên hs liên tục trên [-2;1]∀m.
ta lại có f(-2)=0-4+1=-3
f(1)=0+2.1+1=3 => f(-2).f(1)<0 => pt có ít nhất 1 nghiện trên (-2;1)∀m=> pt có nghiệm ∀m
đặt hs y=f(x)=m(x-1)(x+2)+2x+1
vì đây là hàm đa thức nên liên tục trên R ∀m mà [-2;1]⊂R nên hs liên tục trên [-2;1]∀m.
ta lại có f(-2)=0-4+1=-3
f(1)=0+2.1+1=3 => f(-2).f(1)<0 => pt có ít nhất 1 nghiện trên (-2;1)∀m=> pt có nghiệm ∀m
Với mọi giá trị của tham số m , chứng minh phương trình \(x^5+x^2-\left(m^2+2\right)x-1=0\) luôn có ít nhất 1 nghiệm thực.
Với mọi giá trị của tham số m , chứng minh phương trình \(x^5+x^2-\left(m^2+2\right)x-1=0\) luôn có ít nhất 3 nghiệm thực.
chứng minh rằng phương trình m(x-1)3(x2-4)+x4-3=0 luôn có ít nhất 2 nghiệm phân biệt với mọi giá trị m
chứng minh rằng phương trình (m2+m+4)x2017 -2x+1=0 luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m
với mọi giá trị thực của tham số m, chứng minh phương trình x5+x2-(m2+2)x-1=0 luôn có ít nhất 3 nghiệm thực
Chứng minh phương trình sau có ít nhất 2 nghiệm với mọi m
\(m\left(x-1\right)^{2022}\left(x^2-9\right)+x^2-2\)
cm pt (m\(^2\) -m+1)x^8+3mx^2-3x-2=0 có ít nhất 2 nghiệm trái dấu
cho hàm số y=f(x) liên tục trên [0;1]. Chứng minh phương trình f(x)+[f(1)-f(0)]x=f(1) có ít nhất 1 nghiệm thuộc [0;1]
Cho Phương trình (m-1)(x-1)3(x-2)+2x-3=0 (m là tham số). Chứng minh phương trình luôn có nghiệm với mọi m.