vt MA + vt MB + vt MC = 3 vt MG
Xét VT = (đề bài VT ) = vt MG + vt GA + vt MG + vt GB + vt MG + vt GC = 3 vt MG + ( vt GA + GB + GC ) = 3 vt MG = VP
( G là trọng tâm nên ( vt GA + GB + GC ) = 0 )
vt MA + vt MB + vt MC = 3 vt MG
Xét VT = (đề bài VT ) = vt MG + vt GA + vt MG + vt GB + vt MG + vt GC = 3 vt MG + ( vt GA + GB + GC ) = 3 vt MG = VP
( G là trọng tâm nên ( vt GA + GB + GC ) = 0 )
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O; R). Tìm tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}=3a^2\)
Cho tam giác ABC có trực tâm H. CMR: \(\tan A.\overrightarrow{MA}+\tan B.\overrightarrow{MB}+\tan C.\overrightarrow{MC}=\overrightarrow{0}\)
Cho hcn ABCD có AB = 2AD, BC = a. Tính Min của độ dài vec tơ \(\overrightarrow{u}=\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\), trong đó M là điểm thay đổi trên đường thẳng BC
Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi G,H lần lượt là trọng tâm, trực tâm của tam giác ABC, D là điểm đối xứng với B qua O. a. Chứng minh AHCD là hình bình hành. Suy ra \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO}\). b. Chứng minh: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\). Suy ra O,G,H thẳng hàng. Giúp mình với ạ
Cho tam giác ABC, M là 1 điểm bất kì thuộc miền trong của tam giác. Gọi \(S_a,S_b,S_c\)lần lượt là diện tích các tam giác MBC, MCA, MAB. CMR: \(S_a.\overrightarrow{MA}+S_b.\overrightarrow{MB}+S_c.\overrightarrow{MC}=\overrightarrow{0}\)
Cho tam giác ABC nội tiếp (O ; R). Gọi E là trung điểm của AB và F là điểm thỏa mãn \(\overrightarrow{AC}=3\overrightarrow{AF}\). Vẽ hình bình hành AEMF. Biểu diễn giá trị nhỏ nhất của P theo R
P = (MA + MB + MC)2 + 11OM2
Cho tam giác ABC có tâm đường tròn nội tiếp I, các đường cao của tam giác là \(h_a,h_b,h_c\).
a) Tìm tập hợp những điểm M thỏa mãn \(\left(\overrightarrow{MA}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MB}-\overrightarrow{MA}\right)=0\)
b) Điểm K thỏa mãn \(\dfrac{\overrightarrow{KA}}{h_a}+\dfrac{\overrightarrow{KB}}{h_b}+\dfrac{\overrightarrow{KC}}{h_c}=\overrightarrow{IA}\). Chứng minh rằng : K, I, A thẳng hàng.
Cho tam giác ABC, M là 1 điểm trong tam giác ABC. Đường thẳng AM cắt BC tại D, BM cắt CA tại E, CM cắt AB tại F. CMR nếu \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\) thì M là trọng tâm tam giác ABC.
Cho hình bình hành ABCD có tâm O . Điểm N là trung điểm của AB , G là trọng tâm tam giác ABC .
Tìm điểm F sao cho \(2\overrightarrow{FA}+2\overrightarrow{FB}=3\overrightarrow{FC}-\overrightarrow{FD}\)