Cho f(x) = (x+3)(x+5)(x+7)(x+9)+2018 tìm dư trong phép chia f(x) cho x2+12x+32
CMR: 13+23+33+......+1003 chia hết cho B= 1+2+3+.......+100
cho a, b dương thõa mãn : \(a^3+b^3=3ab-1\)
CMR:\(a^{2018}+b^{2018}=2\)
CMR:
a) 35\(^{2019}\)-35\(^{2018}\)chia hết cho 17
b) 43\(^{2018}\)+43\(^{2019}\)chia hết cho 11
c)27\(^5\)+9\(^7\)chia 4
d) (2m-3)(3n-2)-(3m-2)(2n-3)chia hết cho 5 với mọi số nguyên m và n
Cho: \(a_1+a_2+..............+a_{2018}⋮3\) và \(a_1,a_2,a_3,............,a_{2018}\in N\). CMR: \(a^3_1+a^3_2+a^3_3+.............+a^3_{2018}⋮3\)
1. C/M:
A=n4-14n4+71n2-854n+120 chia hết cho 24
B=260+530 chia hết cho 41
C=3920+3913 chia hết cho 40
D=20172019+20192018chia hết cho 2018
E=32n-9 chia hết cho 72
F=8×16n-8 chia hết cho 120
Cho dãy số thực: \(a_1,a_2,a_3,...............,a_{2018}\) thỏa mãn: \(a_1^1+a^2_2+a^3_3+....................+a_{2018}^{2018}=1009\). CHứng minh: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+..................+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,............a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+...............+a^{2018}_{2018}=1009\). CM: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.........+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,............a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+...............+a^{2018}_{2018}=1009\). CM: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.........+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho a,b,c >0
a^2+b^2+c^2=a^3+b^3+c^3=1
Tính A=a^2017+b^2018+c^2019