a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
a) ta có : VT = \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\) = \(a^4-2\left(ab\right)^2+b^4+4\left(ab\right)^2\)
= \(\left(a^2+b^2\right)^2\) = VP (đpcm)
b) ta có : VT = \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2+c^2\)
= \(\left(ax\right)^2+2axb+b^2+a^2-2abx+\left(bx\right)^2+c^2x^2+c^2\)
= \(\left(ax\right)^2+b^2+a^2+\left(bx\right)^2+\left(cx\right)^2+c^2\)
= \(\left(ax\right)^2+\left(bx\right)^2+\left(cx\right)^2+a^2+b^2+c^2\)
= \(x^2\left(a^2+b^2+c^2\right)+1\left(a^2+b^2+c^2\right)\)
= \(\left(a^2+b^2+c^2\right)\left(x^2+1\right)\) = VP (đpcm)