Ta có: \(3^{12}\equiv1\left(mod13\right)\Rightarrow\left(3^{12}\right)^8\equiv1\left(mod13\right)\text{hay }3^{96}\equiv1\) (mod13)
Suy ra \(3^{99}\equiv3^{96}.3^3\equiv1.3^3\equiv27\equiv1\left(mod13\right)\) (1)
Mà ta có: \(5^2\equiv25\equiv-1\left(mod13\right)\Leftrightarrow\left(5^2\right)^{49}\equiv-1\left(mod13\right)\) hay \(5^{98}\equiv-1\left(mod13\right)\)(2)
Từ (1) và (2) ta có \(3^{99}+5^{98}\equiv1-1\equiv0\left(mod13\right)\)
Hay ta có đpcm.