ta có: S= \(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{1}+\left(\dfrac{-1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+...+\left(\dfrac{-1}{99}+\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(=\dfrac{1}{1}-\dfrac{1}{100}=\dfrac{100-1}{100}=\dfrac{99}{100}\)
mình ngu mấy dạng so sánh lắm nên chỉ làm tới đây thôi nha