Chứng minh rằng :
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
Cho \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng minh rằng S <\(\dfrac{1}{2}\)
Chứng minh rằng : \(\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Chứng minh \(\dfrac{1}{5}\)< \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{99^2}\)+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{3}\)
Cho A=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
Chứng minh rằng 0,2<0,4.
chứng tỏ rằng
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
chứng tỏ rằng
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>\dfrac{99}{202}\)
Chứng minh \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+......+\(\dfrac{1}{1+2+3+4+...+59}\)<\(\dfrac{2}{3}\)
Bài1Chứng minh a )A=\(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\notin N\)
B=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{81}\notin N\)
b) Cho \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\)
Chứng minh m \(⋮\) 11