Cho a,b,c thỏa điều kiện : \(\left\{{}\begin{matrix}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{matrix}\right.\). Chứng minh \(ax^2+bx+c=0\)luôn có nghiệm
cho a, b, c khác 0 và 3ab + 4bc + 5ca = -1. chứng tỏ phương trình (ax^2 + bx + c)(bx^2 + cx + a)(cx^2 + ax + b) = 0 có nghiệm
Vì sao khi phương trình \(ax^2+bx+c=0\) có các hệ số a và c trái dấu thì nó có nghiệm ?
Áp dụng : Không tính \(\Delta\), hãy giải thích vì sao mỗi phương trình sau có nghiệm :
a) \(3x^2-x-8=0\)
b) \(2004x^2+2x-1185\sqrt{5}=0\)
c) \(3\sqrt{2}x^2+\left(\sqrt{3}-\sqrt{2}\right)x+\sqrt{2}-\sqrt{3}=0\)
d) \(2010x^2+5x-m^2=0\)
1) Cho PT: \(x^2+mx+n=0\left(1\right)\) với m,n thuộc Z
a) CMR: Nếu PT(1) có nghiệm hữu tỉ thì nghiệm đó nguyên
b) Tìm nghiệm hữu tỉ của PT (1) nếu n=3
2) CMR: Nếu số \(\overline{abc}\) nguyên tố thì PT: \(ax^2+bx+c=0\) không có nghiệm hữu tỉ
3)Tìm m thuộc Z để nghiệm của PT \(mx^2-2\left(m-1\right)x+m-4=0\)là số hữu tỉ
4) Tìm nghiệm x, y thuộc Q, x> y thỏa mãn
\(\sqrt{x}-\sqrt{y}=\sqrt{2-\sqrt{3}}\)
Cho hệ phương trình
\(\left\{{}\begin{matrix}x+y=6\\x^2+y^2=a\end{matrix}\right.\)
Xác định a để:
a) HPT vô nghiệm
b) HPT có nghiệm duy nhất
c) HPT có 2 nghiệm phân biệt
Cho phương trình: \(x^2-\left(2m+1\right)x-m-4=0\)
a, Giải phương trình khi m=1
b, Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt
Chứng minh rằng các phương trình sau luôn có 2 nghiệm phân biệt với mọi m
a) \(x^2-2\left(m+2\right)x+4m=0\)
b) \(\left(m^2+4\right)x^2-2\left(m-3\right)x-2=0\)
c) \(x^2+2\left(m+1\right)x+2m=0\)
d) \(x^2-3x-m^2=0\)
e) \(x^2+\left(m-2\right)x-8=0\)
Cho phương trình: \(^{x^2-2\left(m+1\right)x-\left(m+2\right)=0}\)
a) giải phương trình khi m=-2
b) tìm điều kiện của m để phương trình trên có 1 nghiệm x1=2
c) Tìm điều kiện của m để pt trên có nghiệm kép
Mong giúp đỡ
Đối với mỗi phương trình sau, hãy tìm các giá trị của m để phương trình có nghiệm; tính nghiệm của phương trình theo m :
a) \(mx^2+\left(2m-1\right)x+m+2=0\)
b) \(2x^2-\left(4m+3\right)x+2m^2-1=0\)