Ta có : \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)
\(=\left(9999.\overline{ab}+99.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì : \(9999.\overline{ab}+99.\overline{cd}⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\overline{ab}.11.909+\overline{cd}.11.9+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
\(=11\left(\overline{ab}.909+\overline{cd}.9\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(11\left(\overline{ab}.909+\overline{cd}.9\right)⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
nên \(\overline{abcdeg}⋮11\)
Vậy nếu \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\) (đpcm)
ta có \(\overline{abcdeg}\)=\(\overline{ab}\).1000+\(\overline{cd}\).100+\(\overline{eg}\).1
=9999.\(\overline{ab}\)+99.\(\overline{cd}\)+\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
\(\Rightarrow\overline{abcdeg}⋮11\)
Ta có :
\(\overline{abcdeg}\) = \(\overline{ab}\) . 10000 + \(\overline{cd}\) . 100 + \(\overline{eg}\)
= \(\overline{ab}\) .9999 + \(\overline{ab}\) + \(\overline{cd}\) . 99 + \(\overline{cd}\) + \(\overline{eg}\)
= \(\overline{ab}\) .909.11 + \(\overline{cd}\) . 9.11 +( \(\overline{cd}\) + \(\overline{eg}\) + \(\overline{ab}\) )
= 11.( \(\overline{ab}\) .909 + \(\overline{cd}\) . 9) + ( \(\overline{cd}\) + \(\overline{eg}\) + \(\overline{ab}\) )
Vì 11 \(⋮\) 11 \(\Rightarrow\) 11.( \(\overline{ab}\) .909 + \(\overline{cd}\) . 9) \(⋮\) 11 (1)
Theo bài ra , ( \(\overline{cd}\) + \(\overline{eg}\) + \(\overline{ab}\) ) \(⋮\) 11 (2)
Từ (1) và (2) \(\Rightarrow\) 11.( \(\overline{ab}\) .909 + \(\overline{cd}\) . 9) + ( \(\overline{cd}\) + \(\overline{eg}\) + \(\overline{ab}\) ) \(⋮\) 11
Hay \(\overline{abcdeg}\) \(⋮\) 11
Vậy nếu ( \(\overline{cd}\) + \(\overline{eg}\) + \(\overline{ab}\) ) \(⋮\) 11 thì \(\overline{abcdeg}\) \(⋮\) 11