\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
Ta có: \(a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\) (nhân cả hai vế cho 2)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\ge0\) ( đúng )