Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Quốc Huy

Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+....................+\frac{100}{3^{100}}< \frac{3}{4}\)

Nguyễn Thanh Hằng
7 tháng 1 2020 lúc 12:20

Đặt :

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+........+\frac{100}{3^{100}}\)

\(\Leftrightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)

\(\Leftrightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+....+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+....+\frac{100}{3^{100}}\right)\)

\(\Leftrightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt : \(H=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\) \(\Leftrightarrow2A=H-\frac{100}{3^{100}}\)

\(\Leftrightarrow3H=3+1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)

\(\Leftrightarrow3H-H=\left(4+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow2H=3-\frac{1}{3^{99}}\)

\(\Leftrightarrow H=\frac{3-\frac{1}{99}}{2}\)

\(\Leftrightarrow2A=\frac{3-\frac{1}{3^{99}}}{2}-\frac{100}{3^{100}}\)

\(\Leftrightarrow A=\frac{1-\frac{1}{3^{99}}}{2}-\frac{100}{2.3^{100}}\)

\(\Leftrightarrow A< \frac{3}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
Hà Đức Thọ
23 tháng 12 2019 lúc 10:44

Test câu trả lời

Khách vãng lai đã xóa
Vũ Minh Tuấn
7 tháng 1 2020 lúc 18:31

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Trúc Giang
Xem chi tiết
Trúc Giang
Xem chi tiết
Dũng Phạm Tiến
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Ruby
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết