Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Thu Giang

Chứng minh rằng

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2012}}< 2\)

soyeon_Tiểubàng giải
1 tháng 12 2016 lúc 20:42

Xét dạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\sqrt{n}.\frac{1}{\sqrt{n}}+\sqrt{n}.\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay vào đề bài ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2012}}\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(1-\frac{1}{\sqrt{2013}}\right)< 2\left(đpcm\right)\)

 

 

 

Perfect Blue
1 tháng 12 2016 lúc 22:14

Liên hợp

Bùi Hà Chi
1 tháng 12 2016 lúc 22:45

Xét dạng tổng quát :\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\frac{1}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán:

\(\frac{1}{2\sqrt{1}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right);\frac{1}{3\sqrt{2}}< 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right);...;\frac{1}{2013\sqrt{2012}}< 2\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

=>\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}...+\frac{1}{2013\sqrt{2012}}< \)\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

=\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{2}{\sqrt{2013}}< 2\)

Vậy \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}...+\frac{1}{2013\sqrt{2012}}< 2\)

Truy kích
7 tháng 12 2016 lúc 19:39

Câu hỏi của Lê Chí Cường - Toán lớp 9 | Học trực tuyến


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết