Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Cho A = \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\). Chứng minh rằng A < \(\dfrac{7}{4}\)
chứng minh rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
Chứng minh rằng:
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\)<1
Chứng minh rằng P>3 biet P= \(\dfrac{5}{2×1}+\dfrac{4}{1×11}+\dfrac{3}{11×2}+\dfrac{1}{2×15}+\dfrac{13}{15×4}+\dfrac{15}{4×43}+\dfrac{13}{43×8}\)
Chứng minh rằng : \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+....+\dfrac{2012}{3^{2012}}< \dfrac{3}{4}\)
Cho \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{2003^2}\)
Chứng minh rằng \(\dfrac{1}{3}< A< 1\)