Tính:
a) \(A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)b) \(B=\dfrac{1-3}{1\cdot3}+\dfrac{2-4}{2\cdot4}+\dfrac{3-5}{3\cdot5}+\dfrac{4-6}{4\cdot6}+...+\dfrac{2011-2013}{2011\cdot2013}+\dfrac{2012-2014}{2012\cdot2014}+\dfrac{2013-2015}{2013\cdot2015}\)Giúp mình với!
Cho A = \(\dfrac{1}{2014}\)+\(\dfrac{2}{2013}\)+\(\dfrac{3}{2012}\)+...+\(\dfrac{2013}{2}\)+2014
B = \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{2015}\)
Tính giá trị \(\dfrac{A}{B}\)
1.tính M=\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
1,
a,tính:\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{1}{2012}-\dfrac{1}{2}}\)
b,so sánh:A=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2010};B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{17}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
chứng minh rằng:
E=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{3}{4}\)
Tính :
\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\)
Giúp mk với
Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)