=> 1 - 1 /2^2 + 1 /2^2 -1 /3^2 + 1/3^2 - 1/4^2 + .... + 1/9^2 - 1/10^2 <1 => 1 - 1/10^2 <1 ( luôn đúng )
=> 1 - 1 /2^2 + 1 /2^2 -1 /3^2 + 1/3^2 - 1/4^2 + .... + 1/9^2 - 1/10^2 <1 => 1 - 1/10^2 <1 ( luôn đúng )
Cho A = \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+.....+\dfrac{1}{2019^2}\)
Chứng minh rằng \(\dfrac{20}{101}< A< \dfrac{1}{4}\)
Chứng minh rằng: \(S=\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}< \dfrac{1}{18}\)
CMR \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
a, Cho b là số tự nhiên, b>1. Chứng minh rằng: \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
b, Áp dụng phần a: Cho S\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\). Chứng minh rằng: \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
Bài1. (4điểm) Thực hiện phép tính:
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
b) \(B=\dfrac{-1}{2}+\dfrac{-1}{6}+\dfrac{-1}{12}+\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
CMR : \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Với \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}+\dfrac{1}{9^2}\)
Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)
Tính thuận tiện A=\(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}\)
tính a, \(\dfrac{5.4^{15}.9^9-4.30^{20}8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
b, 1\(\dfrac{1}{30}\):\(\left(24\dfrac{1}{6}-24\dfrac{1}{5}\right)-\dfrac{1\dfrac{1}{2}-\dfrac{3}{4}}{4x-\dfrac{1}{2}}=\left(-1\dfrac{1}{15}\right):\left(8\dfrac{1}{5}-8\dfrac{1}{3}\right)\)