Chứng minh rằng: \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{70}>\dfrac{4}{3}\)
Bài 1:Cho: A=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{40}\)
Chứng minh A không phải là số tự nhiên
tính một cách hợp lí:
A) \(4\dfrac{3}{4}+\left(-0,37\right)+\dfrac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\dfrac{1}{12}\)
b) \(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
c) \(\dfrac{\dfrac{5}{22}+\dfrac{3}{13}-\dfrac{1}{2}}{\dfrac{4}{13}-\dfrac{2}{11}+\dfrac{3}{2}}\)
Chứng minh
1-\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{19}\)-\(\dfrac{1}{20}\)=\(\dfrac{1}{11}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{13}\)+...+\(\dfrac{1}{20}\)
help me
cho tổng B=\(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{22}\). Chứng minh rằng: B > \(\dfrac{1}{2}\)
1) Cho S = \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Chứng minh rằng 1 < S < 2 từ đó suy ra S không phải là số tự nhiên
Cho S = \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\). Hãy so sánh S và \(\dfrac{1}{2}\)
Chứng tỏ
A = \(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{22}>\dfrac{1}{2}\)
Bài 1: Tính nhanh
\(A=\dfrac{1}{4}.\dfrac{7}{3}.12\)
\(B=\dfrac{3}{8}.56.\dfrac{25}{7}.\left(-4\right)\)
\(C=\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{3}{13}.\dfrac{6}{7}\)
\(D=\dfrac{-1}{4}.\dfrac{152}{11}+\dfrac{68}{4}.\dfrac{-1}{11}\)