b/ Nếu n^5 và n giống chữ số tận cùng thì n^5-n tận cùng là 0 chia hết cho 10.Ta cần đi CM n^5-n chia hết 10
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+2n\left(n-1\right)\left(n+1\right)\)
Có \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\&2\).Mà 5 và 2 là 2 số nguyên tố cùng nhau nên \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\)
Có \(5n\left(n-1\right)\left(n+1\right)⋮5\&2\).Mà 5,2 nguyên tố cùng nhau nên \(5n\left(n-1\right)\left(n+1\right)⋮10\)
Từ đó có n^5-n chia hết cho 10 suy ra ĐPCM