help me ace legona!!!
1) chứng minh BĐT với a, b,c,d dương
\(a^3+b^3+c^3+d^3\ge a+b+c+d\)
2) với a,b,c dương chứng minh
\(\dfrac{abc}{ab\left(a+b\right)+abc}\ge\dfrac{abc}{a^3+b^3+c^3}\)
1: Cho a,b,c>0. CMR: \(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ac}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{c^2+a^2}{b^2+ac}\ge\dfrac{9}{2}\)
Chứng minh bất đẳng thức : \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) vs \(a\ge b\ge c>0\)
bài 1 : cho a, b, c>0 thỏa mãn a2+b2+c2=3
chứng minh rằng \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}>=\dfrac{3}{2}\)
bài 2 : cho a, b, c>0. chứng minh rằng
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}>=\dfrac{1}{2}\)
bài 3 : cho a, b, c>0 thỏa mãn ab+bc+ac=abc
tìm GTLN của \(S=\dfrac{1}{3a+2b+c}+\dfrac{1}{3b+2c+a}+\dfrac{1}{3c+2a+b}\)
1.Cho a+b+c+d+e=1
Tìm MAx P=ab+bc+cd+de+ae
2.Cho a,b,c đôi một khác nhau
cm : \(\dfrac{a^3-b^3}{\left(a-b\right)^3}+\dfrac{b^3-c^3}{\left(b-c\right)^3}+\dfrac{c^3-a^3}{\left(c-a\right)^3}\ge\dfrac{9}{4}\)
Cho a, b, c là độ dài 3 cạnh tam giác. CMR :
B1
a. \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b. \(abc>\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c. \(2a^2b^2+2b^2c^2+2c^2a^2-a^4+b^4-c^4>0c\)
d. \(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)
B2
a. \(\dfrac{1}{a+b};\dfrac{1}{b+c};\dfrac{1}{c+a}\) cũng là 3 cạnh 1 tam giác khác.
b. \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
1: Cho a,b,c là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR: \(a^2+b^2+c^2+4abc< \dfrac{1}{2}\)
2: Cho -1<x,y,z<3 và x+y+z=1. CMR: \(x^2+y^2+z^2\le11\)
3: Cho x,y,z là các số \(\ge\)1 . CMR: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
4: Cho x>y và xy=1. CMR: \(\dfrac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
5: Cho a,b,c là độ dài 3 cạnh tam giác:
a)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Cho a,b,c> 0 và a+b+c=3. CMR: \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)
CM các bđt sau :
a)\(\dfrac{a+b+c}{3}\cdot\dfrac{x+y+z}{3}\le\dfrac{ax+by+cx}{3}\)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
c)\(\dfrac{a1^2+a2^2+a3^2+....+an^2}{n}\ge\left(\dfrac{a1+a2+a3+....+an}{n}\right)^2\)
Giúp mk nhanh nhé các bạn! Tối mk phải nộp bài rồi!