Ta có:
VT= \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\) = VP
=> đpcm
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Biến đổi vế trái:
VT\(\)\(\)\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)\
\(=2xy+2yz+2zx\)
\(=2\left(xy+yz+zx\right)=\) VP