\(\dfrac{sin^2x-cos^2x+cos^4x}{cos^2x-sin^2x+sin^4x}=\dfrac{1-2cos^2x+cos^4x}{1-2sin^2x+sin^4x}==\dfrac{\left(cos^2x-1\right)^2}{\left(sin^2-1\right)^2}=\dfrac{sin^4x}{cos^4x}=tan^4x\)
\(\dfrac{sin^2x-cos^2x+cos^4x}{cos^2x-sin^2x+sin^4x}=\dfrac{1-2cos^2x+cos^4x}{1-2sin^2x+sin^4x}==\dfrac{\left(cos^2x-1\right)^2}{\left(sin^2-1\right)^2}=\dfrac{sin^4x}{cos^4x}=tan^4x\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
Chứng minh:
1.\(\dfrac{\cot^2x-\sin^2x}{\cot^2x-\tan^2x}=\sin^2x\cdot\cos^2x\)
2.\(\dfrac{1-\sin x}{\cos x}-\dfrac{\cos x}{1+\sin x}=0\)
3.\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x\)
4.\(\dfrac{\tan x}{1-\tan^2x}\cdot\dfrac{\cot^2x-1}{\cot x}=1\)
5.\(\dfrac{1+\sin^2x}{1-\sin^2x}=1+2\tan^2x\)
Chứng minh các đẳng thức:
\(cos^3xsinx-sin^3xcosx=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\dfrac{1}{4}\left(3+cos4x\right)\)
Chứng minh đẳng thức:
1 ,\(tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)+cot\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)=\dfrac{2}{cosx}\)
2 ,\(sin^8x-cos^8x=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)\)
3 ,\(3-4cos2x+cos4x=8sin^4x\)
4 ,\(sin\left(2x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)-cos\left(2x+\dfrac{\pi}{3}\right).cos\left(\dfrac{2\pi}{3}-x\right)=cosx\)
5 ,\(\sqrt{3}cos2x+sin2x+sin\left(4x-\dfrac{\pi}{3}\right)=4cos\left(2x-\dfrac{\pi}{6}\right).sin^2\left(x+\dfrac{\pi}{6}\right)\)
Chứng minh: cos^4x-sin^4x=1-2sin^2x
chứng minh các đẳng thức sau :
a) \(\frac{1+2\sin x\cos x}{\sin^2x-\cos^2x}\)=\(\frac{\tan x+1}{\tan x-1}\)
b) \(\sin\)4x + \(\cos\)4x =\(\frac{3}{4}\)+\(\frac{1}{4}\)\(\cos\)x
c) \(\sin\)6x + \(\cos\)6x = \(\frac{5}{8}\) + \(\frac{1}{8}\)\(\cos\)4x
d) \(\cot\)x - \(\tan\)x = 2\(\cot\)2x
Chứng minh
a) \(\dfrac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}=2\cos x\)
b) \(\cos\dfrac{5x}{2}.\cos\dfrac{3x}{2}+\sin\dfrac{7x}{2}.\sin\dfrac{x}{2}=\cos x.\cos2x\)
Cho góc x với cos=-1/2. Tính giá trị biểu thức B=cos^2x+sin^2x+tan^2x
1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)