Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Huyền

Chứng minh: (ab+bc+ca)2\(\ge\)3abc(a+b+c)

Khôi Bùi
25 tháng 9 2018 lúc 12:34

Giả sử điều cần c/m là đúng , ta có :

\(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2a^2bc+2abc^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2\ge2a^2bc+2ab^2c+2abc^2\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(b^2c^2-2ab^2c+a^2b^2\right)+\left(a^2c^2-2abc^2+b^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ac\right)^2+\left(bc-ab\right)^2+\left(ac-bc\right)^2\ge0\)

( điều này luôn đúng )

\(\Rightarrow\) điều giả sử là đúng

\(\Rightarrow\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)

banh


Các câu hỏi tương tự
Naruto Uzumaki
Xem chi tiết
asssssssaasawdd
Xem chi tiết
Nam Lee
Xem chi tiết
Big City Boy
Xem chi tiết
Thánh cao su
Xem chi tiết
Nam Lee
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Nhóc Bin
Xem chi tiết
dbrby
Xem chi tiết