a) Gọi n=2k+1(k \(\in\) N*)
\(\Rightarrow\)n= (k2+2k+1) - k2 = (k+1)2 - k2 (1)
Mà k \(\in\) N*\(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k2 và (k+1)2 là 2 số chính phương liên tiếp (2)
Từ (1);(2)\(\Rightarrow\) đpcm
b) Gọi n=2k+1(k \(\in\) N*)
\(\Rightarrow\) n2=(2k+1)2=4k2+4k+1=4k(k+1)+1(1)
Lại có: k \(\in\) N* \(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k(k+1) \(⋮2\)
\(\Rightarrow4k\left(k+1\right)⋮8\) \(\Rightarrow\) 4k(k+1)+1 chia 8 dư 1(2)
Từ(1);(2)\(\Rightarrow\) n2 chia 8 dư 1 với mọi n là số tự nhiên lẻ