Cho x,y,z là các số dương. CMR:
a) (x+y+z)(\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\)) ≥\(\dfrac{9}{2}\)
b) (x+y+z+t)(\(\dfrac{1}{x+y+z}+\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}\)) ≥\(\dfrac{16}{3}\)
c) \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥\(\dfrac{1}{2}\left(a+b+c\right)\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị của biểu thức : \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Các bạn giải hộ mình bài này với: Cho a,b,c > 0
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}>=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
MÌNH ĐÃ GIẢI THỬ RỒI VÀ KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG, CÁC BẠN CHO Ý KIẾN NHÉ VÀ GIÚP MÌNH BIẾT THÊM CÁC CÁCH GIẢI KHÁC NHÉ:
x=\(\dfrac{1}{a}\)
y=\(\dfrac{1}{b}\)
z=\(\dfrac{1}{c}\)
=> \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\) *
Áp dụng bất đẳng thức schwarz ta được:
\(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}>=\dfrac{\left(x+y+z\right)^2}{x+y+z}\)**
Từ * và ** suy ra \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}>=\dfrac{\left(x+y+z\right)^2}{x+y+z}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho a,b,c,x,y,z khác 0
Thỏa mãn điều kiện:\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{c}{z}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=10\)
Tính S=\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{z^2}{c^2}\)
Cho a,b,c và x,y,z khá nhau và khác 0 thỏa mãn :
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\). Tính M=\(\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}}\)
cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho \(\dfrac{x}{a}\) + \(\dfrac{y}{b}+\dfrac{z}{c}=2\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\) ( a,b,c,x,y,z ≠ 0) Tính giá trị của biểu thức
D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
a) tính giá trị biểu thức
M=70(719+718 +717+...+71+72)+1
b)cho x,y,z khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức
N= \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)