Tính
N=\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Biết
N=\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
GIẢI ĐƯỢC BẰNG HAI CÁCH THÌ CÀNG TỐT
Cho ad=bc, với a,b,c,d≠0, ta có thể suy ra tỉ lệ thức nào sao đây không và vì sao?
A.\(\dfrac{2-2b}{b}=\dfrac{c-2d}{d}\)
B.\(\dfrac{a-2b}{c-2d}=\dfrac{b}{d}\)
Cho tỉ lệ thức : \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh :
a ) \(\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\)
b ) \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\). C/m \(\dfrac{2a^2-3ab+5b^2}{2b^2+2ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\). Vs điều kiện mẫu thức xác định
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a,b,c,d\ne0;a\ne\pm b;c\ne\pm d\right)\), hãy suy ra các tỉ lệ thức sau :
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
e) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\), chứng minh rằng:
a) \(\dfrac{3a^6+c^6}{3b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\)
b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{5b-3a}{5c-3d}\)
Từ tỉ lệ thức a/b=c/d (a,b,c,d khác 0;a khác \(\pm b\);c\(\ne\)\(\pm d\)) hãy suy ra các tỉ lệ thức sau:
a,\(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\)
b,\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
c,\(\dfrac{a+b}{a}\) = \(\dfrac{c+d}{c}\)
d,\(\dfrac{a-b}{a}\) =\(\dfrac{c-d}{c}\)
e,\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\), hãy suy ra các tỉ lệ thức sau :
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{a+b}=\dfrac{c}{c+d},\left(a+b\ne0,c+d\ne0\right)\)
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}\) =\(\dfrac{a+c-b}{b}\)=\(\dfrac{b+c-a}{a}\)
Tính P= \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)