Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Câu 1: cho x, y, z > 0 thỏa mãn x+2y+3z>=20
tìm GTNN của \(P=x+y+z+\dfrac{3}{x}+\dfrac{9}{2y}+\dfrac{4}{z}\)
Câu 2: cho a, b > 0 và ab+4<=2b
tìm GTLN của \(P=\dfrac{ab}{a^2+2b^2}\)
cho các số thực dương x, y, z thỏa mãn x+y+z=1
chứng minh\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}=< 3\)
cho x, y, z thỏa mãn x4 + y4 + x2 - 3 = 2y2 ( 1 - x2 )
tìm GTNN, GTLN : A = x2 + y2
Cho căn[x^2+căn bậc 3(x^4y^2)] + căn[y^2+căn bậc 3(x^2y^4)] = a.?
C/m:căn bậc 3 của x^2 + căn bậc 3 của y^2 = căn bậc 3 của a^2
cho x,y> 0 thỏa mãn xy+x+y=1. Tính tổng
\(S=2x\sqrt{\frac{1+y^2}{1+x^2}}+2y\sqrt{\frac{1+x^2}{1+y^2}}+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
Cho x,y,z \(\ge\)0 thỏa mãn:
\(4x+2y+2z-4\sqrt{xy}-4\sqrt{xz}+2\sqrt{yz}-10\sqrt{z}-6\sqrt{y}+34=0\)
Tính giá trị của biểu thức M = (x-15)10+(y-8)6+(z-24)2017
Tìm x,y thỏa mãn
x+2y=8y2+\(\sqrt{1-x2}\) và \(\sqrt{x2-2x+4y+11}=1+\sqrt{x-4y+2}\)