Áp dụng bất đẳng thức cosi cho 2 số dương:
\(x+\dfrac{4}{x}\ge2\sqrt{x\cdot\dfrac{4}{x}}=4\)
Dấu '=" xảy ra khi và chỉ khi x2=4<=>x=2
\(2y+\dfrac{18}{y}\ge2\sqrt{2y\cdot\dfrac{18}{y}}=12\)
Dấu "=" xảy ra khi và chỉ khi 2y2=18<=>y=3
x+y\(\ge5\) theo đề bài
Dấu "=" xảy ra khi và chỉ khi x+y=5
=>\(\left(x+\dfrac{4}{x}\right)+\left(2y+\dfrac{18}{y}\right)+\left(x+y\right)\ge4+12+5=21\)
Dấu bằng xảy ra khi và chỉ khi x=2 y=3
Đúng 0
Bình luận (4)