Lời giải:
Ta có: \((x+y)^3=xy(3x+3y+2)\)
\(\Leftrightarrow x^3+y^3+3xy(x+y)=3xy(x+y)+2xy\)
\(\Leftrightarrow x^3+y^3=2xy\)
Nếu trong hai số $x,y$ tồn tại số bằng $0$ thì \(\sqrt{1-xy}=1\in\mathbb{Q}\)
Nếu cả hai số $x,y$ đều khác $0$
Chia cả hai vế cho $xy$ ta thu được:
\(\frac{x^2}{y}+\frac{y^2}{x}=2\)
\(\Leftrightarrow \left(\frac{x^2}{y}+\frac{y^2}{x}\right)^2=4\)
\(\Leftrightarrow \frac{x^4}{y^2}+\frac{y^4}{x^2}+2xy=4\)
\(\Leftrightarrow \frac{x^4}{y^2}+\frac{y^4}{x^2}-2xy=4-4xy\)
\(\Leftrightarrow \left(\frac{x^2}{y}-\frac{y^2}{x}\right)^2=4(1-xy)\)
\(\Leftrightarrow 1-xy=\left(\frac{x^2}{2y}-\frac{y^2}{2x}\right)^2\)
\(\Rightarrow \sqrt{1-xy}=|\frac{x^2}{2y}-\frac{y^2}{2x}|\in \mathbb{Q}\) do \(x,y\in\mathbb{Q}\)
Ta có đpcm.