\(\dfrac{1.\sqrt{x-1}}{x}+\dfrac{1.\sqrt{y-1}}{y}\le\dfrac{1+x-1}{2x}+\dfrac{1+y-1}{2y}=\dfrac{1}{2}+\dfrac{1}{2}=1\)
Dấu "=" xảy ra khi x=y=2
\(\dfrac{1.\sqrt{x-1}}{x}+\dfrac{1.\sqrt{y-1}}{y}\le\dfrac{1+x-1}{2x}+\dfrac{1+y-1}{2y}=\dfrac{1}{2}+\dfrac{1}{2}=1\)
Dấu "=" xảy ra khi x=y=2
Cho x,y,z dương. CMR
\(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
Cho x,y,z>0 và x+y+z = xyz
CMR
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2+1}}+\dfrac{1}{\sqrt{z^2+1}}\le\dfrac{3}{2}\)
Cho 2 số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\). Chứng minh rằng: \(\sqrt{x}+\sqrt{y}\ge4\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho x,y,z>0 t/m \(xy+yz+zx\ge3\). C/m
\(\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\ge3\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Chứng minh rằng \(\dfrac{1}{\sqrt{x+2y}}+\dfrac{1}{\sqrt{y+2z}}+\dfrac{1}{\sqrt{z+2x}}\le\sqrt{3}\).
Cho x,y,z>0 tm\(xy+yz+zx\ge3\). C/m
\(\dfrac{x^3}{\sqrt{y^2+3}}+\dfrac{y^3}{\sqrt{z^2+3}}+\dfrac{z^3}{\sqrt{x^2+3}}\ge\dfrac{1}{2}\)
Tìm GTNN
a) \(y=\sqrt{x^3+2\left(1+\sqrt{x^3+1}\right)}+\sqrt{x^3+2\left(1-\sqrt{x^3+1}\right)}\)
b) \(f\left(x\right)=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1
c) \(y=\dfrac{x-2017}{\sqrt{x-2018}}\)