Lời giải:
Nếu $y=0$ thì $x^2=1$. Khi đó $P=2$
Nếu $y\neq 0$. Đặt $\frac{x}{y}=t$ thì:
$P=\frac{2(x^2+6xy)}{x^2+2xy+3y^2}=\frac{2(t^2+6t)}{t^2+2t+3}$
$P(t^2+2t+3)=2t^2+12t$
$t^2(P-2)+2(P-6)t+3P=0$
$\Delta'=(P-6)^2-3P(P-2)\geq 0$
$\Leftrightarrow (P-3)(P+6)\leq 0$
$\Leftrightarrow -6\leq P\leq 3$ nên $P_{\max}=3$
Vậy $P_{\max}=3$
Giá trị này đạt tại $(x,y)=(\frac{3}{\sqrt{10}}; \frac{1}{\sqrt{10}})$ hoặc $(\frac{-3}{\sqrt{10}}; \frac{-1}{\sqrt{10}})$
Đúng 2
Bình luận (0)