Cho x+y =2. GTNN của biểu thức (1+x4)(1+y4)+4(xy-1)(3xy-1)
Cho x,y thỏa mãn x + y = 2. GTNN của P = (1 + x4)(1 + y4) + 4(xy - 1)(3xy - 1) là ???
Cho x và y thoả mãn x + y = 2. Giá trị nhỏ nhất của biểu thức P = (1 + x4)(1 + y4) + 4(xy - 1)(3xy - 1) là . . .
biết x+y =2 tìm GTNN của A: \(\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)\left(3xy-1\right)\)
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1
Tính GTNN của biểu thức M=\(x^2+y^2-xy-x+y+1\)
a) cho x,y thỏa mãn 8x^2+y^2+1/4x^2=4
tìm x,y để xy đạt GTNN, GTLN.
b) tìm x,y nguyên 3xy+x+y=17
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
giúp mk vs @Anh Hoàng Vũ
1. Tìm GTNN của \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}-\dfrac{x^2-2}{x^2-x}\right)\) khi x>1
2. Cho biểu thức: \(B=\dfrac{2}{x}-\left(\dfrac{x^2}{x^2-xy}+\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y^2-xy}\right):\dfrac{x^2-xy+y^2}{x-y}\)
a. Rút gọn B
b. Tìm giá trị của B với |2x-1|=1 và |y+1|=1/2