Không dùng máy tính , tính: P = \(\frac{2006}{2007}+\sqrt{1+2006^2+\frac{2006^2}{2007^2}}\)
cho x= \(7+4\sqrt{3}\), y= \(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé
cho x=\(7+4\sqrt{3}\), y=\(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé! thanks
Mấy bạn giúp mình bài này nha!
1) Tính A=(\(\sqrt{6}+\sqrt{2}\))*(\(\sqrt{3}-2\))*\(\sqrt{2+\sqrt{3}}\)
2) Cho x=4+\(\sqrt{10}\)
Tính A=\(\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)
3) Cho \(\sqrt{x}+\sqrt{y}-\sqrt{z}=0\)
CMR: \(\dfrac{1}{x+y-z}+\dfrac{1}{y+z-x}+\dfrac{1}{z+x-y}=0\)
4) Cho (\(\sqrt{x^2+5}+x\))*(\(\sqrt{y^2+5}+y\))=4
CMR: x+y=0
Chỉ mình làm những dạng như này với. Thanks
1.cho biểu thức :
A=\(\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-x\right)\)
a, Tìm x để A có nghĩa
b, Rút gọn A
c, Tìm x để A=7- \(4\sqrt{3}\)
B=\(\dfrac{6\sqrt{x}}{x-9}+\dfrac{2}{\sqrt{x}+3}+\dfrac{3}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\)
a, rút gọn B
b, Tính giá trị của B tại x=4
c, Tìm x nguyên để B nguyên
2.Tính
N= \(\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+...}}}}\)
3. Thực hiện phép tính :
\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2017}+\sqrt{2018}}\)
4.Cho
P=\(\sqrt{2009}+\sqrt{2010}+\sqrt{2011}\) và Q=\(\sqrt{2007}+\sqrt{2009}+\sqrt{2017}\)
Không dùng máy tính, so sánh P và Q
Rút gọn các biểu thức sau:
a, \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
b, \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) với \(x\ge1\)
Bài 1:
Cho dãy số xác định bởi: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{U_n}}\end{matrix}\right.\) Với n là số tự nhiên khác 0. Tính U2003.
Bài 2: Tính giá trị biểu thức A biết: \(A=\sqrt{2007+\sqrt{2007+\sqrt{2007}+...+\sqrt{2007}}}\) (n dấu căn)
Giải các phương trình sau :
\(\left(\sqrt{1-\sqrt{x}}+\sqrt{1+\sqrt{x}}\right)\left(2+2\sqrt{1-x}\right)\)
\(\sqrt{x}\sqrt{3x-2}=x^2+1\)
Giúp mình với các bạn ơi ! thanks các bn nhó
Cho x,y là số thực dương.Chứng minh rằng :
\(\left(x+y\right)^2+\dfrac{x+y}{2}\ge2x\sqrt{y}+2y\sqrt{x}\)
Giúp mk nha mn