\(x^2+2x-2=0\Rightarrow\left\{{}\begin{matrix}x^2+2x+1=3\\x^2=2-2x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=3\\x^4=4x^2-8x+4\end{matrix}\right.\)
Thay vào biểu thức:
\(M=x^4+16x+2007=4x^2-8x+4+16x+2007\)
\(\Rightarrow M=4x^4+8x+4+2007=4\left(x+1\right)^2+2007=4.3+2007=2019\)
M = (x4 + 2x3 - 2x2) - (2x3 + 4x2 - 4x) + (6x2 + 12x - 12) + 2019
M = x2(x2 + 2x - 2) - 2x(x2 + 2x - 2) + 6(x2 + 2x - 2) + 2019
M = 0 + 0 + 0 + 2019
M = 2019