Cho biểu thức M = \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) với x,y,z,t là các số tự nhiên khác 0 . Chứng minh \(M^{10}< 1025\)
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Cho 3 số a, b, c khác 0 và : a(y + z) = b(x + z) =c(z + y) Chứng minh rằng : y - z /a(b - c) = z - x / b(c - a) = x - y / c(a - b)
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
Cho ba số x,y,z khác 0 thỏa mãn x+y+z=0.Tính C=2x.(x+y).(z+x)+y.(x+y).(y+z)/z.(x+z).(y+z).Mình đang cần gấp,cảm ơn các bạn
Cho x,y,z \(\ne\) 0 và \(x^2=yz\);\(y^2=xz\);\(z^2=xy\)
CMR : x=y=z
Cho ba số x, y, z khác 0 và x + y + z ≠ 0 thỏa mãn điều kiện:
(y + z – 2x)/x = (z + x – 2y)/y = (x + y – 2z)/z. Hãy chứng tỏ A = [1 + x/y][1 + y/z][1 + z/x] là một số tự nhiên.
Cho ba số x,y,z khác 0 thỏa mãn x+y+z=0.Tính \(\dfrac{2x\left(x+y\right)\left(z+x\right)+y\left(x+y\right)\left(y+z\right)}{z\left(x+z\right)\left(y+z\right)}\)
cho x,y,z khac 0 va\(\dfrac{x+3y-z}{z}\)= \(\dfrac{y+3z-x}{x}\)=\(\dfrac{z+3x-y}{y}\)
Tính P = \(\left(\dfrac{x}{y}+3\right)\)\(\left(\dfrac{y}{z}+3\right)\)\(\left(\dfrac{z}{x}+3\right)\)