Giả sử trong 100 số đó không có 2 số nào bằng nhau.
\(\Rightarrow\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}+...+\dfrac{1}{\sqrt{x_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)
\(< 1+\dfrac{2}{\sqrt{2}+\sqrt{1}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}+...+\dfrac{2}{\sqrt{100}+\sqrt{99}}\)
\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19< 20\)
Vậy trong 100 số đã cho có ít nhất 2 số bằng nhau
Giả sử 100 số nguyên dương đã cho ko tồn tại \(x_i=x_k\)
Ko mất tính tổng quát giả sử \(x_1< x_2< x_3< ...< x_{100}\)
Vì \(x_1;x_2;x_3;...;x_{100}\) đều là các số nguyên dương suy ra \(x_1\ge1;x_2\ge2;....;x_{100}\ge100\)
Tức là có: \(VT< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}< 10< VP\)
Mâu thuẫn với giả thiết suy ra điều giả sử sai
Tức tồn tại \(x_i=x_k\) với \(i\ne k\) và \(i,k\in\left\{1;2;...;100\right\}\)