Ta có :
\(A=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}\)
\(\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\)
\(\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\)
\(\dfrac{z}{z+x}>\dfrac{z}{x+y+z}\)
\(\Rightarrow A>\dfrac{x+y+z}{x+y+z}=1\Rightarrow A>1\left(1\right)\)
Lại có :
\(\dfrac{x}{x+y}< \dfrac{x+z}{x+y+z}\)
\(\dfrac{y}{x+z}< \dfrac{y+z}{x+y+z}\)
\(\dfrac{z}{z+x}< \dfrac{z+x}{x+y+z}\)
\(\Rightarrow A< \dfrac{2\left(x+y+z\right)}{x+y+z}=2\Rightarrow A< 2\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow1< A< 2\Rightarrow\) \(A\) ko là số tự nhiên