Bài 5. (3,0 điểm).
1) Tìm giá trị nhỏ nhất của biểu thức:
\(P=xy\left(x+4\right)\left(y-2\right)+6x^2+5y^2+24x-10y+2043\).
2) Cho các số x, y, z không âm thoả mãn x+y+x=1 . Chứng minh rằng:
x + 2y + z \(\ge\) 4(1-x) (1-y)(1-z)
Cho biểu thức:
\(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\)
a,rút gọn B
b, tính giá trị của biểu thức B tại x thoả mãn: |2x+1|=5
c, tìm x để \(B=\dfrac{-3}{5}\)
d, tìm x để B<0
Cho các số dương x,y thỏa mãn x+y=1 . Tìm giá trị nhỏ nhất của
P=\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
I : 1) PTĐTTNT : a) \(x^2-2xy+y^2-x+y\)
b) CMR giá trị của biểu thức sau không phụ thuộc vào biến
\(C=\left(x-y\right)\left(x^2+xy+y^2\right)-x\left(x^2-y\right)+y\left(y^2-x\right)\)
help me
Cho các số x, y thoả mãn x+y\(\ne0\), chứng minh:
x2 + y2 + \(\left(\dfrac{1+xy}{x+y}\right)^{^2}\)\(\ge2\)
Cho biểu thức:
\(A=\left(\dfrac{1}{x-2}-\dfrac{2x}{4-x^2}+\dfrac{1}{2+x}\right).\left(\dfrac{2}{x}-1\right)\)
a,rút gọn A.
b, tính giá trị của biểu thức A tại x thoả mãn: 2x2+x=0
c,tìm x để \(A=\dfrac{1}{2}\)
d,tìm x nguyên để A nguyên dương
Cho x, y, z thỏa mãn: x+y+z\(=\)3 và x4+y4+z4\(=\)3xyz
Tính giá trị biểu thức: M=x2018+y2019+z2020.
cho x,y,z>0. Cmr: \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).