Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho \(\widehat{xOy}=50^o\) và Oz là tia đối của tia Ox

a) Tính \(\widehat{yOz}\)

b)Trên cùng một nửa mặt phẳng bờ là đường thẳng xz có chứa Oy vẽ tia Ot sao cho \(\widehat{zOt}=80^o\).Tia Oy có là tia phân giác của \(\widehat{xOt}\)không ? Vì sao?

c)Vẽ tia Om là tia phân giác của \(\widehat{zOt}\).Chứng tỏ \(\widehat{yOm}\) là góc vuông

Các ACE vào giúp mk vs ạ

Trần Quỳnh Mai
26 tháng 5 2017 lúc 16:01

a, Vì Oz và Ox là hai tia đối nhau

\(\Rightarrow\widehat{xOy}\)\(\widehat{yOz}\) là hai góc kề bù

\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^o\)

\(\widehat{xOy}=50^o\)

\(\Rightarrow50^o+\widehat{yOz}=180^o\)

\(\Rightarrow\widehat{yOz}=180^o-50^o=130^o\)

b, Trên cùng một nửa mặt phẳng bờ chứa tia Oz có :

\(\widehat{zOt}=80^o;\widehat{yOz}=130^o\)

\(\Rightarrow\widehat{zOt}< \widehat{yOz}\left(80^o< 130^o\right)\)

\(\Rightarrow\) Tia Ot nằm giữa hai tia Oz và Oy

\(\Rightarrow\widehat{zOt}+\widehat{tOy}=\widehat{yOz}\)

Thay \(\widehat{zOt}=80^o;\widehat{yOz}=130^o\) , ta có :

\(80^o+\widehat{tOy}=130^o\)

\(\widehat{tOy}=130^o-80^o=50^o\)

Vì Ot và Ox nằm trên hai nửa mặt phẳng đối nhau có bờ chứa tia Oy và :

\(\widehat{tOy}+\widehat{xOy}=50^o+50^o=100^o< 180^o\)

\(\Rightarrow\) Tia Oy nằm giữa hai tia Ot và Ox

Mà : \(\widehat{tOy}=\widehat{xOy}\left(=50^o\right)\)

\(\Rightarrow\) Tia Oy là tia phân giác của \(\widehat{xOt}\)

c, Vì Om là tia phân giác của \(\widehat{zOt}\)

\(\Rightarrow\widehat{zOm}=\widehat{mOt}=\dfrac{\widehat{zOt}}{2}=\dfrac{80^o}{2}=40^o\)

Vì Om và Oy nằm trên hai nửa mặt phẳng đối nhau có bờ chứa tia Ot

\(\Rightarrow\) Tia Ot nằm giữa hai tia Om và Oy

\(\Rightarrow\widehat{mOt}+\widehat{tOy}=\widehat{yOm}\)

Thay : \(\widehat{mOt}=40^o;\widehat{tOy}=50^o\) ta có :

\(40^o+50^o=\widehat{yOm}\)

\(\widehat{yOm}=90^o\Rightarrow\widehat{yOm}\) là góc vuông

DOREAMON
26 tháng 5 2017 lúc 15:26

@Nguyễn Trần Thành Đạt

DOREAMON
26 tháng 5 2017 lúc 15:27

@Nguyễn Huy Tú

DOREAMON
26 tháng 5 2017 lúc 15:27

@Tuấn Anh Phan Nguyễn

Nguyễn Lưu Vũ Quang
26 tháng 5 2017 lúc 20:45

x z O y t m

a) Vì hai tia Ox, Oz đối nhau.

\(\Rightarrow\widehat{xOy}\)\(\widehat{yOz}\) kề bù.

\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^o\)

\(\Rightarrow50^o+\widehat{yOz}=180^o\)

\(\Rightarrow\widehat{yOz}=130^o\)

Vậy \(\widehat{yOz}=130^o\).

b) Ta có: \(\widehat{xOt}\)\(\widehat{zOt}\) kề bù.

\(\Rightarrow\widehat{xOt}+\widehat{zOt}=180^o\)

\(\Rightarrow\widehat{xOt}+80^o=180^o\)

\(\Rightarrow\widehat{xOt}=100^o\)

Trên nửa mặt phẳng bờ Oy, có \(\widehat{zOt}< \widehat{yOz}\left(80^o< 130^o\right)\).

\(\Rightarrow\) Tia Ot nằm giữa hai Oz, Oy.

\(\Rightarrow\widehat{zOt}+\widehat{tOy}=\widehat{yOz}\)

\(\Rightarrow80^o+\widehat{tOy}=130^o\)

\(\Rightarrow\widehat{tOy}=50^o\)

Trên nửa mặt phẳng bờ Ot, có \(\widehat{tOy}< \widehat{xOt}\left(50^o< 100^o\right)\).

\(\Rightarrow\) Tia Oy nằm giữa hai tia Ox, Ot.

\(\Rightarrow\widehat{tOy}+\widehat{xOy}=\widehat{xOt}\)

\(\Rightarrow50^o+\widehat{xOy}=100^o\)

\(\Rightarrow\widehat{xOy}=50^o\)

\(\widehat{tOy}=\widehat{xOy}=\widehat{\dfrac{xOt}{2}}\left(=50^o\right)\)

\(\Rightarrow\) Oy là tia phân giác của \(\widehat{xOt}\).

c) Vì Om là tia phân giác của \(\widehat{zOt}\).

\(\Rightarrow\widehat{tOm}+\widehat{zOm}=\widehat{\dfrac{zOt}{2}}=\dfrac{80^o}{2}=40^o\)

Ta có: \(\widehat{xOm}\)\(\widehat{zOm}\) kề bù.

\(\Rightarrow\widehat{xOm}+\widehat{zOm}=180^o\)

\(\Rightarrow\widehat{xOm}+40^o=180^o\)

\(\Rightarrow\widehat{xOm}=140^o\)

Trên nửa mặt phẳng bờ Ox, có \(\widehat{xOy}\)\(\widehat{xOm}\) kề bù.

\(\Rightarrow\) Tia Oy nằm giữa hai tia Ox, Om.

\(\Rightarrow\widehat{xOy}+\widehat{yOm}=\widehat{xOm}\)

\(\Rightarrow50^o+\widehat{yOm}=140^o\)

\(\Rightarrow\widehat{yOm}=90^o\)

\(\Rightarrow\widehat{yOm}\) là góc vuông.

Vậy \(\widehat{yOm}\) là góc vuông.


Các câu hỏi tương tự
Đỗ Phân Tuấn Phát
Xem chi tiết
Sakura Linh
Xem chi tiết
Hoàng Minh Nguyệt
Xem chi tiết
Kfkfj
Xem chi tiết
Askaban Trần
Xem chi tiết
Nguyễn Hữu Hùng
Xem chi tiết
Kfkfj
Xem chi tiết
Trần Quang Hiếu
Xem chi tiết
Hà Thị Phương Nga
Xem chi tiết