Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow{MA}.\overrightarrow{MC}=\overrightarrow{MB}.\overrightarrow{MD}\) ?
Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng \(\overrightarrow{MH}.\overrightarrow{MA}=\dfrac{1}{4}BC^2\) ?
cho tam giác ABC có AB=a, AC=2a, D là trung điẻm AC, M là điểm thoả mãn
\(\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{BC}\) . Tính \(\overrightarrow{BD}.\overrightarrow{AM}\)
Tam giác ABC có AB = 6cm, AC = 8cm, BC = 11cm
a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và chứng tỏ rằng tam giác ABC có góc A tù
b) Trên cạnh AB lấy điểm M sao cho AM = 2cm và gọi N là trung điểm của cạnh AC. Tính \(\overrightarrow{AM}.\overrightarrow{AN}\) ?
Cho nửa đường tròn tâm O có đường kính \(AB=2R\). Gọi M và N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I
a) Chứng minh \(\overrightarrow{AI}.\overrightarrow{AM}=\overrightarrow{AI}.\overrightarrow{AB}\) và \(\overrightarrow{BI}.\overrightarrow{BN}=\overrightarrow{BI}.\overrightarrow{BA}\)
b) Hãy dùng kết quả câu a) để tính \(\overrightarrow{AI}.\overrightarrow{AM}+\overrightarrow{BI}.\overrightarrow{BN}\) theo R
Trong mặt phẳng Oxy cho hai điểm \(A\left(5;5\right);B\left(3;-2\right)\). Một điểm M di động trên trục hoành Ox. Tìm giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)
cho tam giác vuông cân ABC tại A.G là trọng tâm tam giác, M là trung điểm của BC.
Tính: \(\left(2\overrightarrow{AB}-\overrightarrow{AC}\right).\overrightarrow{AG}\)
Cho tam giác đều ABC có cạnh bằng a, gọi G là trọng tâm. Tính T: \(\overrightarrow{GA}.\overrightarrow{BC}+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)
Cho tam giác đều ABC cạnh a. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và \(\overrightarrow{AB}.\overrightarrow{BC}\) ?