cho tam giác ABC và I thỏa mãn : \(\overrightarrow{IA}-2\overrightarrow{IB}+4\overrightarrow{IC}=\overrightarrow{0}\)
a, phân tích \(\overrightarrow{IA}\) theo \(\overrightarrow{AB};\overrightarrow{AC}\)
b gọi G là trọng tâm tam giác, J thỏa mãn \(\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AB}\)
chứng minh : I,J,G thẳng hàng
Cho tam giác ABC
1/ Xác định I sao cho \(\overrightarrow{IB}+\overrightarrow{IC}-\overrightarrow{IA}=0\)
2/ Tìm điểm M thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+2\overrightarrow{MC=0}\)
cho tam giác ABC gọi I là tâm đg tròn nội tiếp tam giác. AB=c, BC=a,AC=b
CMR a, \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}\)\(=\overrightarrow{0}\)
b, \(sinA.\overrightarrow{IA}+sinB.\overrightarrow{IB}+sinC.\overrightarrow{IC}\)\(=\overrightarrow{0}\)
Cho \(\Delta ABC\), gọi I là trung điểm của cạnh AC. Tìm điểm M thỏa mãn điều kiện: \(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IC}-\overrightarrow{CM}=\overrightarrow{0}\)
Can u help me???
please, luv u (tymtymtym)
cho âm giác ABC :
I là một điểm thỏa mãn: \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
xác định tập hợp các điểm M thỏa mãn :
a, \(|\)\(\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}|=|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}|\)
b, 2\(|\)\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|=|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}|\)
BÀI 1: Cho tứ giác ABCD . M,N lần lượt là trung điểm AD,BC.
a) chứng minh \(\overrightarrow{MN}\) = \(\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)\)
b) Gọi I nằm trên đoạn MN sao cho IM = 2IN. Chứng minh rằng \(\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}+\overrightarrow{ID}=O\)
BÀI 2 : Cho hình bình hành ABCD.Gọi O là điểm bất kì trên cạnh AC.Từ O kẻ các đường thẳng // với các cạnh.Các đường này lần lượt cắt AB,BC,CD,DA tại M,F,N,E.Chứng minh : \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
Bài 1:
Cho điểm I thuộc đoạn thẳng AB, I khác A và B. Chứng minh rằng \(\overrightarrow{OI}=\frac{IB}{IA}\overrightarrow{OA}+\frac{IA}{AB}\overrightarrow{OB}\forall O\)
Bài 2:
Cho tam giác ABC, các điểm M,N,P thỏa mãn \(\overrightarrow{BM}=\frac{-1}{3}\overrightarrow{BC},\overrightarrow{AN}=\frac{2}{5}\overrightarrow{AC},\overrightarrow{AP}=x\overrightarrow{AB}.\)Tìm x biết rằng M,N,P thẳng hàng.
Ai giúp mình với chiều mai kiểm tra 2 bài này rồi mà mình nháp mãi chẳng ra.... :<
Cho \(\Delta\)ABC:
a) Xác định I sao cho: \(\overrightarrow{IA}+\overrightarrow{3IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
b) Xác định D sao cho: \(\overrightarrow{3DB}-2\overrightarrow{DC}=\overrightarrow{0}\)
c) Chứng minh A, D, I thẳng hàng.
(Giải hộ em câu c)