Cho tứ giác ABCD . Gọi A', B', C', D' thứ tự là trọng tâm của tam giác BCD, tam giácCDA, tam giác DAB, tam giác ABC và E, F là trung điểm của hai đường chéo AC, BD. chứng minh các đường thẳng AA', BB', CC', DD' và EF' đồng quy
Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. Chứng minh rằng :
a) EI // CD, IF // AB
b) \(EF\le\dfrac{AB+CD}{2}\)
Cho tứ giác ABCD .Gọi E,F,I theo thứ tự là trung điểm của AD,BC,AC. Gọi M là trung điểm của ED.Từ M kẻ đường thẳng song song với EI,cắt AC tại N.
Chứng minhrằng:
a)EI//CD;IF//AB.
b)BiếtIN=3cm.TínhđộdàiđoạnthẳngIC.
Cho tứ giác ABCD .Gọi E,F,I theo thứ tự là trung điểm của AD,BC,AC. Gọi M là trung điểm của ED.Từ M kẻ đường thẳng song song với EI,cắt AC tại N.
Chứng minhrằng:
a)EI//CD;IF//AB.
b)BiếtIN=3cm.TínhđộdàiđoạnthẳngIC.
Cho hình thang ABCD(AB//CD).Gọi E,F là trung điểm của AD và BC.Phân giác của A và B. Cắt EF theo thứ tự ở I và K.
a,Chứng minh :tam giác AIE và tam giác BKF là tam giác cân
b,Chứng minh : tam giác AID và tam giác BKC là các tgv
c,Chứng minh : IE=1/2AD và KF=1/2BC
d,Cho AB=5cm,CD=18cm,AD=6cm,BC=7cm,Tính IK=?
Bài 2.Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung đếm của AD, BC, AC. Chứng minh rằng:
a. EI//CD, IF//AB
b.
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 4: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 5: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 2: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 3: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC
a) So sánh độ dài EK và CD, KF và AB
b) Chứng minh rằng \(EF\le\dfrac{AB+CD}{2}\)