Bài 4: Ôn tập chương Khối đa diện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tứ diện ABCD. Gọi \(h_A,h_B,h_C,h_D\) lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng :

                            \(\dfrac{1}{h_A}+\dfrac{1}{h_B}+\dfrac{1}{h_C}+\dfrac{1}{h_D}=\dfrac{1}{r}\)

Nguyen Thuy Hoa
20 tháng 5 2017 lúc 13:34

Gọi I là tâm mặt cầu nội tiếp tứ diện, V là thể tích tứ diện. Ta có :

\(V=V_{IBCD}+V_{ICDA}+V_{IDAB}+V_{IABC}\)

Khối đa diện


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Mai Hoàng Phương Nga
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Khuê Tạ
Xem chi tiết
BÁ Long
Xem chi tiết
Thị Thanh Thảo Tô
Xem chi tiết